NPIC: Hierarchical Synthetic Image Classification Using Image Search and Generic Features
نویسندگان
چکیده
We introduce NPIC, an image classification system that focuses on synthetic (e.g., non-photographic) images. We use class-specific keywords in an image search engine to create a noisily labeled training corpus of images for each class. NPIC then extracts both content-based image retrieval (CBIR) features and metadata-based textual features for each image for machine learning. We evaluate this approach on three different granularities: 1) natural vs. synthetic, 2) map vs. figure vs. icon vs. cartoon vs. artwork 3) and further subclasses of the map and figure classes. The NPIC framework achieves solid performance (99%, 97% and 85% in cross validation, respectively). We find that visual features provide a significant boost in performance, and that textual and visual features vary in usefulness at the different levels of granularities of classification.
منابع مشابه
Synthetic Image Categorization
We introduce NPIC, an image classification system that focuses on synthetic (e.g., non-photographic) images. We use class-specific keywords in an image search engine to create a noisily labeled training corpus of images for each class. NPIC then extracts both content-based image retrieval (CBIR) features and metadata-based textual features for each image for machine learning. We evaluate this a...
متن کاملPalarimetric Synthetic Aperture Radar Image Classification using Bag of Visual Words Algorithm
Land cover is defined as the physical material of the surface of the earth, including different vegetation covers, bare soil, water surface, various urban areas, etc. Land cover and its changes are very important and influential on the Earth and life of living organisms, especially human beings. Land cover change monitoring is important for protecting the ecosystem, forests, farmland, open spac...
متن کاملRobust Method for E-Maximization and Hierarchical Clustering of Image Classification
We developed a new semi-supervised EM-like algorithm that is given the set of objects present in eachtraining image, but does not know which regions correspond to which objects. We have tested thealgorithm on a dataset of 860 hand-labeled color images using only color and texture features, and theresults show that our EM variant is able to break the symmetry in the initial solution. We compared...
متن کاملSpectral-spatial classification of hyperspectral images by combining hierarchical and marker-based Minimum Spanning Forest algorithms
Many researches have demonstrated that the spatial information can play an important role in the classification of hyperspectral imagery. This study proposes a modified spectral–spatial classification approach for improving the spectral–spatial classification of hyperspectral images. In the proposed method ten spatial/texture features, using mean, standard deviation, contrast, homogeneity, corr...
متن کاملObject-Based Classification of UltraCamD Imagery for Identification of Tree Species in the Mixed Planted Forest
This study is a contribution to assess the high resolution digital aerial imagery for semi-automatic analysis of tree species identification. To maximize the benefit of such data, the object-based classification was conducted in a mixed forest plantation. Two subsets of an UltraCam D image were geometrically corrected using aero-triangulation method. Some appropriate transformations were perfor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006